Divide and Conquer

Introduction to Divide-and-

Conquer

- Divide-and conquer is a general algorithm design paradigm:
- Divide: divide the input data S in two or more disjoint subsets $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots$
- Recur: solve the subproblems recursively
- Conquer: combine the solutions for S_{1}, S_{2}, \ldots, into a solution for S
* The base case for the recursion are subproblems of constant size
* Analysis can be done using recurrence equations

Basic Matrix Multiplication

Suppose we want to multiply two matrices of size N x N : for example A x $B=C$.
$\left|\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right|=\left|\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right|\left|\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right|$
$C_{11}=a_{11} b_{11}+a_{12} b_{21}$
$C_{12}=a_{11} b_{12}+a_{12} b_{22}$
$C_{21}=a_{21} b_{11}+a_{22} b_{21}$
$\mathrm{C}_{22}=\mathrm{a}_{21} \mathbf{b}_{12}+\mathrm{a}_{22} \mathbf{b}_{22}$
2×2 matrix multiplication can be
accomplished in 8 multiplication. $\left(\mathbf{2 0 g}_{2}{ }^{8}=\mathbf{2}^{3}\right)$

Divide and Conquer Matrix Multiply

$$
A \times B=R
$$

A_{0}	A_{1}			
A_{2}	A_{3}	\times	B_{0}	B_{1}
:---	:---	:---		
B_{2}	B_{3}	$=$	$\mathbf{A}_{0} \times \mathbf{B}_{0}+\mathbf{A}_{1} \times \mathbf{B}_{2}$	$\mathbf{A}_{0} \times \mathbf{B}_{1}+\mathbf{A}_{1} \times \mathbf{B}_{3}$
:---	:---			
$\mathbf{A}_{2} \times \mathbf{B}_{0}+\mathbf{A}_{3} \times \mathbf{B}_{2}$	$\mathbf{A}_{2} \times \mathbf{B}_{1}+\mathbf{A}_{3} \times \mathbf{B}_{3}$			

-Divide matrices into sub-matrices: $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{2}$ etc
-Use blocked matrix multiply equations
-Recursively multiply sub-matrices

Strassens's Matrix Multiplication

* Strassen showed that 2×2 matrix multiplication can be accomplished in 7 multiplication and 18 additions or subtractions..$\left(\mathbf{2 l o g}_{2}{ }^{7}=\mathbf{2}^{2.807}\right)$
* This reduce can be done by Divide and Conquer Approach.

Divide and Conquer Matrix Multiply

$$
\begin{array}{ccc}
A \times B & = & R \\
a_{0} \times b_{0} & = & a_{0} \times b_{0}
\end{array}
$$

- Terminate recursion with a simple base case

Strassens's Matrix Multiplication

$$
\left.\left|\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right|=\left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right| \begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array} \right\rvert\,
$$

$$
\begin{array}{ll}
\mathbf{P}_{1}=\left(\mathbf{A}_{11}+\mathbf{A}_{22}\right)\left(\mathbf{B}_{11}+\mathbf{B}_{22}\right) & \mathbf{C}_{11}=\mathbf{P}_{1}+\mathbf{P}_{4}-\mathbf{P}_{5}+\mathbf{P}_{7} \\
\mathbf{P}_{2}=\left(\mathbf{A}_{21}+\mathbf{A}_{22}\right) * \mathbf{B}_{11} & \mathbf{C}_{12}=\mathbf{P}_{3}+\mathbf{P}_{5} \\
\mathbf{P}_{3}=\mathbf{A}_{11} *\left(\mathbf{B}_{12}-\mathbf{B}_{22}\right) & \mathbf{C}_{21}=\mathbf{P}_{2}+\mathbf{P}_{4} \\
\mathbf{P}_{4}=\mathbf{A}_{22} *\left(\mathbf{B}_{21}-\mathbf{B}_{11}\right) & \mathbf{C}_{22}=\mathbf{P}_{1}+\mathbf{P}_{3}-\mathbf{P}_{2}+\mathbf{P}_{6} \\
\mathbf{P}_{5}=\left(\mathbf{A}_{11}+\mathbf{A}_{12}\right) * \mathbf{B}_{22} & \\
\mathbf{P}_{6}=\left(\mathbf{A}_{21}-\mathbf{A}_{11}\right) *\left(\mathbf{B}_{11}+\mathbf{B}_{12}\right) & \\
\mathbf{P}_{7}=\left(\mathbf{A}_{12}-\mathbf{A}_{22}\right) *\left(\mathbf{B}_{21}+\mathbf{B}_{22}\right) &
\end{array}
$$

Application

-Top down parser
-Basic Fourier transform

- Sorting
-Multiplying Larger
- Branch \& Bound

Scope of Research

Solution to stack overflow

Assignment

Q.1)What is Divide \& conquer method?
Q.2)Explain Strassen's matrix multiplication method with an example.
Q.3)How to find analysis of problem i.e. using Divide \& conquer method.

